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Abstract. Fuzzy control has growing to many applications in the course of time
since it was developed at early 60’s. Recent works as they increase in
complexity require every time more calculations; this is why usage of specific
fuzzy hardware is becoming more suitable 1o satisfy processing time demands.
It has been noticed that conventional fuzzy processors and simulators use
operations such as multiplications and divisions over an input space given by
the number of resolution bits used, this is reflected in the total time consumed
to give a crisp result out from an input. To reduce time consumed we avoid
usage of these equations by replacing them with adders and shifting. As
representation of real functions in binary terms is really not continuous,
membership functions are not represented at all elements, they are discretized
into m quantization levels called o —levels which are on dependence of the
number of resolution bits used for membership universe space and is
independent of bits used for input space. There is no simulator that let us
visualize how inference procedure is performed in terms of integer numbers as
they are used by the computer architecture, on this work a “Digital Fuzzy
Inference Engine Simulator (DIiFES)”, which is realized to satisfy fuzzy
hardware design demands according to mentioned representation, is presented

in order to visualize inference procedure at a hardware equations level to make
easier this design process.

Keywords: Fuzzy Logic, Fuzzy Sets, Defuzzification, Discrete Numbers,
Quantization, Inference Simulation.

1 Introduction

Since the first application of fuzzy logic to control a steam engine realized by
Mamdani at 70’s [1], several applications have grown up, among this we can mention
Sugeno’s work on an automatic parking car [2], high performance applications on
water treatment [3][4], nuclear reactors [5][6], robotics[7], pattern recognition [8]
and physics experiments [9], among others.

Fuzzy logic has been widely accepted because it can be used to efficiently translate
human knowledge into control rules for different applications. It has been shown_ that
a fuzzy inference controller is robust and gave better results than convennona.ll
controllers. There are researchers that have shown all advantages that fuzzy logic
controllers offer, considering them as universal aproximators [10][11]{12]{13].
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While applications are extended to more complex processes that require faster
processing speed, they have turned to use specific inference hardware. First digital
fuzzy processor was realized by Watanabe and Togai at 1985. Since then, many
interesting architectures have been presented [14], [15], [16], [17] y [18]. Each of
them has improved the processor features, obtaining every time less complicated
hardware that realizes inferences faster, consuming less processing time and
decreasing number of hardware resources.

With FPGA boom, because of its binary reprogrammable capabilities, some
researchers have wused this dispositive to implement fuzzy hardware
[19][20][(21][22][23], on this works digital circuitry is adapted according to the
mathematics of fuzzy logic. The tendency is to avoid as possible time consuming

operations as multiplications and divisions, these two operands need many instruction

cycles to give a result.
Actually there is no simulator system where all steps required to implement digital

algorithms of fuzzy logic are visualized, on this paper we give an approach to this,
first, we give an introduction to fuzzy control where general controller is shown to

explain its blocks digital realization on consequent chapters. A simulator on
C++Builder programming language, was realized with equations shown in content, to

finally give some results and conclusions.

2 Fuzzy Control

The parts which compose a fuzzy controller are shown on Fig. 1; outside the dotted
line is the crisp type environment of the controller. Fuzzifier and defuzzifier are
translators between crisp and fuzzy numbers at input and output respectively; rule
base contains all the rules that describe system behaviour from where inference
decides which rules use to make a decision. Each block is commented on following

parts.

Rule
Base

A 4 \ 4

[::> Fuzzifier » Inference Defuzzifier >

y

| Fig. 1. Fuzzy controller blocks.
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2.1 Fuzzifier

First block from left on Fig. 1 corresponds to the fuzzifier stage where the real
input value is mapped into the corresponding universe of discourse, on binary
numbers this is called discretization or quantization of input universe into m number

of a —/evels [24] and a membership value is assigned to each of n points in x.
As mentioned before, the operator fuzzifier can take different forms, on this

document « —levels are used to assign different membership values to a
membership function in the following way:

Let M be a trapezoidal membership function,
withx; € X;i=0,1,...,n,X €[0,2"” —1]; the number of points in x axis, and m
discretization levels that give the resolution on y axis. Let’s assume that we have the
base of M with height equal to 0 or &, in the range from x=0 and x=n; calling these

two points initial (x;° ) and final (x7°) values respectively, this segment will be
called the base and its length is given by the following equation (1):

Lenght, =x7° —xg° ¢))

As we are using integer numbers, @, will have height equal to O, then its area is

equal to 0, this is an interval defined by the length of the segment and is used just to
know if input x corresponds to this function as on (2).
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Fig. 2. Discretization of a trapezoidal membership function into ¢ — Jevels .

Every & —level for a membership function will be then defined by the following
four parameters: M is the name of the function and is used to group a —levels,

Xo" is the initial point and X7~ is the final point of the interval; @, is the height or
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membership value for all the elements in [x:“ ,x;' ] Fig. 2 shows a discretization of
a membership function with m a —levels and n = x7° points on the space of X.

The whole M membership function is then defined by the set of all its a —/evels

which describe it totally.
To evaluate a point on M we check first (2) and if true we can test on which

a —levels of M this point matches and keep record of which was the higher
membership value, and the name of the function. With this information for each
function activated we can perform inference procedure, which will be shown on the

following section.

2.2 Mamdani Inference

Inference procedure used here is Mamdani form corresponds to middle blocks on
Fig.1, exemplified on Fig. 3 with a two input-one output fuzzy system, with two and
three membership functions respectively; x € X,y €Y,ze Z to form truth table,
there is an output function activated for each pair of inputs. When two points (x, y) are
evaluated as input, they can be operated with any 7-norm or r-conorm to realize
conjunction or disjunction, this gives as result the height on @ and the membership

function to be evaluated.

G
2 S P M G
Y
o P [ M
I >
F _ G
% z

Fig. 3. Mamdani Inference Example

Let us consider as example: an input value is in M membership function when (2)
is true, min operator is used between x and y inputs to set the height of the rule to be
evaluated according to expression (3), z is a one-dimensional weight vector used to

obtain the shape of output which is completely defined by its @ —levels .

Z; = min(a'xl .a, );  0<i<Rules, &)

Next step is to create homogeneous intervals, this is realized using min and max
operators on each level for each activated function obtaining the length for output

function, this is repeated for eacha; < @, until reaches maximum membership
valuea,,, , the initial and final points are obtained with (4). The resultant set of

a —levels is aggregated to obtain the area, this is realized with (5). Up to now we



Digital Fuzzy Inference Engine Simulator 111

have described the shape of resultant function, which is next, is to defuzzify and
obtain a crisp output in the following section.

z o PP am aG’ aGG 4
o 2y =min\zg' ,25' 524" »Zg' 4)
i 1 re G a®? «G%
z7 =max\zy' ,z5' ,z5' ,2zg

4 =3 - e ”

i=0

2.3 Defuzzification

There exists many mecthods to defuzzify, right block on Fig. 1, all of them satisfy different
precision nceds and speed requirements, most commonly used on literature for digital
implementations are center of gravity COG [25], center of average [26], among others. A good
rescarch on this is found at [27], where new mecthods are introduced and compared with
previous ones. Another form of fast defuzzifier is on [28).

We have distinguished that all of this methods need at least k-1 iterations
according to the input spaces given by 2" where n is the number of bits used. We will
use Center of Slice Area Average defuzzifier, on which we need a,... iterations and

sum midpoints of every Q; , then divide them between the maximum « reached, this
is expressed by (6). As example on Fig. 4, there is a case where m=4 here, the 4
centers are shown for every ; , and output is marked as COSAA.

COSAA
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Fig. 4. Center of Slice Area Average
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Qe (x‘f't _xo“:) a, (6)
COSAA = ; 2 o
- QA ax

3. Fuzzy Inference Simulator (DiFES)

Methodology presented here was simulated on a C++Builder program on which every
inference stage was implemented according to equations (1-6). Here two inputs with
two membership functions each and one output with three membership functions as
on Fig. 3 is discretized at 2 bits for membership i.e. four @ —/evels , and 4 bits for x

axis, i.e. 16 values on the input universe.
DIiFES Simulator is divided on four sections: Input Functions, Output Functions,

Inference Evaluation and Defuzzification is the last section, following sections detail

them.

3.1 Input Membership Functions

First section corresponds to the input functions for both inputs x, y shown on Fig. 5
where correspondent functions are for x input: SMALLX and BIGx, for y input are
SMALLYy and BIGy, they are shown separately with the objective of visualize them in
a better way. Numbers that compose each function are used to identify its
membership value, which is at least 1 and at most 4. These functions are identical for
each input and are defined by equation (7) for SMALL and (8) for BIG, where can be
noticed that equations correspond to trapezoids defined by intervals and are
overlapped each other. As can be seen and as we are using two bits to represent
membership value a continuous function can not be represented because of

discretization.

SMALL X SYALL Y
PRV T DN BAA4s 5 s w5 5 575 55 &8
33333333 ------- 33333333..------
222222222222- - - - 222222222222 - - -
IRRRRARRRRRRARENR IRRRRRRRRARRRRRE!
BIG X BG Y
............ 4444 O ey 7 ' T |
-------- 33333333 eeee.++.33333333
-..222222222222 --+222222222222
IRRRARRRRRARRARA] IRRRRARARRERERERR

Fig. 5. Input Membership Functions for x and y.
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Wigeivs [0,3] @
Hsmare =7 _ “M;X x+4, [3,15])
Tnax y [0,12] ®
Hpig = 12
Eazixs [12,15]

Following code is realized to create the set of @ —levels that define input
membership functions (7) (8) for the variable x.

For (int a=0; a<=3;a++) //**********SMALLX construction

MF(a).function=1;

MF(a).start=0;

MF[a).end= 15 - 4°a;

MF[a).area = (MF[a).end - MF[a].start) +1;
MF(a).alfalevel=a+1;

For (int a=4; a<8;a++) //*********BIGx Construction

MF(a).function=2;

MF(a].start=4*(a-4);

MF(a).end=15;

MF(a).area = ((MF[a).end - MF(a).start)+1);
MF(a).alfalevel=a-3;

3.2 Output Membership Function

Second part corresponds to output membership functions for output variable z, they
are SMALLz, MEDIUMz and BIGz; these functions are defined by the equations (9-
11), Fig. 6 shows simulator output membership functions, according to the equations
mentioned. Discretization is like on previous section at 2 bits for membership and 4
bits for input space.

aMAX ’ [0’ 2] (9)

Hsuavts = _—afgx x+4, [2,8]
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a (10)
MAX x —4, [4,7]

3
Hrepiurse =\ Capx s [7,8]

—1‘3"‘—"’—x+ll, [4,7]

an
Cuax x4, [7,13]
[13,15]
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Fig. 6. Output Membership Functions

3.3 Inference Evaluation

Third section of simulator is where crisp inputs are introduced for x and y over the
input universe (4 bit), on top of Fig. 7, these values are evaluated on input
membership functions for each when pushing EVALUATE button.

POINT X0 POINT Y3
v ! n h
sy 4 I+ n
L BX

Fig. 7. Inference Evaluation

Down evaluation button, there are two columns labelled SX and BX, they
correspond to membership functions SMALLx and BIGx respectively; the rows are
the same for y input, SY, BY correspond to SMALLy and BIGy respectively. Each of
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mentioned labels has a text box where membership value activated for that respective
input is shown, these values are used to generate rule weight matrix with the

intersection points using min operator as on (3).

3.4 Defuzzification

Afler stages mentioned, last to do is to obtain a resultant membership function, by
means of aggregation operator (5), and to get a crisp output from it using a defuzzifier
(6). Where figure is the resultant aggregated function, and COSAA is the crisp type
output value obtained from center of slice area average method. On top of Fig. 8,
there is aggregated output membership function which is used to obtain defuzzified

output COSAA as a crisp value over the output universe.

2

"AGGREGATED
OUTPUT

COSAA lﬂ_ N

Fig. 8. Aggregation and defuzzification of output membership function

4  Results
POINT X|4 POINT Y|4 POINT X [10 POINT v [14
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By |- = F By [4 2 B
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Fig. 9. Simulation Results for Two Different Cases, a) x=4, y=4.b) x=10, y=14
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Simulator DIiFES presented here was tested for different pairs of inputs x, y, where
for each case a defuzzified crisp output was obtained using input and output
membership functions as mentioned on previous sections. As can be seen on Fig. 9a
and b and on Fig. 10 a and b, here are four different cases, on top there are inputs for
both points x and y, when evaluating this points, we obtain a crisp output at the
bottom part of each figure, as result of COSAA defuzzifier. It can be easily seen that
aggregated output membership function, changes its form according to the different

cases presented.

POINT X[1 POINT ¥ [14 POINT X[15 POINT Y [0
g [4 I I gy I e n
sy 1 n h sy 4 h Ja
T | O
X Bx X :
sxs: 5457 & some M wses oner o o Feeeee e 4l fonn
AGGREGATED | 7777533335777 AGGREGATED |77 17533335" 11 "
outPuT ARRRARRRRRRRRRA R . OUTPUT IRRRRRERRRRRARER]
L
cosma [T cosAA l_7' I
(a) )

Fig. 10. Simulation Results for another Two Different Cases, a) x=1, y=14. b) x=15, y=0

5 Conclusions

In this work, there appeared the tool of simulation DiFES, which was used to
demonstrate and to conclude that there is a form to represent fuzzy logic inference
engine by means of simple operations such as additions and shifting, which gives as
result a reduction on time consumed during complex calculation operands on
conventional implementations [25][26][27][28], which use at less n-/ iterations, our
propose iteration number is less or equal than the m number of & —levels that is
proportional to the number of bits used to discretize y axis into a truth space with
height equal to 2"-1.

The a —level method used to represent membership functions can be adapted to
almost any shape, because it is represented as square slices with & height and a
variable interval as its length and its resolution its on dependence on how many bits
are used to discretize membership values.

Defuzzification method used calculates the center of area of every slice that forms
aggregated output membership function, in terms of a-/Jevels and calculate an

average from them, requiring at most m-/ iterations.
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There justifies itself the need of the design of tools of simulation that allow us to

experiment with new proposals of hybrid systems fuzzy-hardware.
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